
Adaptive Prefetching Scheme for Peer-to-Peer
Video-on-Demand Systems with a Media Server

Ryusuke Uedera and Satoshi Fujita
Department of Information Engineering, Hiroshima University

Kagamiyama 1-4-1, Higashi-Hiroshima, Japan
Email: {ryusuke,fujita}@se.hiroshima-u.ac.jp

Abstract—In this paper, we consider Peer-to-Peer Video-
on-Demand (P2P VoD) systems based on the BitTorrent
file sharing protocol. Since the rarest first policy adopted
in the BitTorrent protocol could not collect all pieces
corresponding to a video file by their playback time, we
need to develop a new piece selection rule particularly
designed for P2P VoDs. In the proposed scheme, we assume
the existence of a media server which can upload any piece
upon request, and try to bound the load of such media
server by carefully discriminating pieces to be requested,
by taking into account the rareness of the pieces held by
its nearby peers, estimated size of the overlay network,
and the file size to be downloaded. The performance of
the proposed scheme is evaluated by simulation.

I. INTRODUCTION

Video-on-Demand (VoD) is an online service which
enables customers to watch their favorite videos at any
time, at any place [1]. In this service, video file requested
by a user is downloaded from the VoD system, while it
is not necessary to wait for the completion of the entire
download before starting the play of the video, i.e., she
can start watching while download is in progress. Many
of existing VoD systems such as YouTube and Ustream
are implemented under the traditional client/server (C/S)
model [2], [3]. Thus, although they could enjoy several
advantages of the C/S model such as an efficient resource
management and a secure contents delivery, they have
a serious drawback such that the central server easily
becomes a bottleneck, and it causes a single point of
failure in the worst case.

In order to overcome such problems in conventional
VoDs, Peer-to-Peer (P2P) technology has emerged as a
perspective way to realize scalable, dependable VoDs. A
VoD system based on the P2P technology is generally
referred to as a P2P VoD. P2P is a distributed system
consisting of a number of autonomous computers called
peers, and each peer participating to the system plays the
roles of a server and a client at the same time, so that

network services will be provided with the aid of many
participating peers. Such a cooperative behavior of the
peers reduces the load of a server in the C/S model, and
in many cases, it significantly increases the scalability
and the dependability of the overall system.

In this paper, we will focus our attention to P2P VoDs
of the BitTorrent type. BitTorrent [4] is a P2P file sharing
protocol based on the notions of file chunking, quick
piece propagation using the rarest first piece selection
rule, and an incentive mechanism based on the tit-for-tat
strategy. BASS [9] is the first attempt to combine the
BitTorrent with conventional VoDs. In [10], Vlavianos
et al. proposed a P2P VoD called BiToS, which equips a
modified piece selection rule so as to avoid suspending
of a video play while conducting a download (details of
those systems will be described in Section III). In general
P2P file sharing systems, a peer can leave the system as
soon as it finishes the download of an entire file, and it
causes a situation in which there remain only few peers
to have a copy of the file. In particular, if the number
of peers who have downloaded the file is very small, we
could not avoid a situation in which a portion of the file
is not held by any peer. Such a “missing” piece can not
be acquired by any peer until another peer having that
piece will join the network. In P2P VoDs, although such
a problem of missing pieces could be partially resolved
by preparing a media server which stores all video files
as in BASS, the load of the media server becomes heavy
as increasing the number of missing pieces in the system.

In this paper, we propose a piece prefetching scheme
to reduce the amount of such missing pieces. Our scheme
consists of two basic techniques. The first technique is
to estimate the set of missing pieces by referring to the
local information around each peer. By limiting the area
of references by an appropriate TTL (Time-to-Live), and
by limiting the time interval of consecutive references by
an appropriate value, we can bound the cost required for
each prefetch operation sufficiently low. The accuracy of

such a local estimation becomes sufficiently high when
the number of peers in the corresponding P2P overlay
is relatively small (as will be described later, we assume
that a P2P overlay is organized for each media file to be
downloaded). In our second technique, we try to switch
the mode of each peer, i.e., whether or not a prefetching
should be executed, by referring to the estimated size of
the P2P overlay and the file size to be downloaded.

The performance of the proposed scheme is evaluated
by simulation. The result of simulations indicates that:
1) the prefetching protocol certainly reduces the load
of the media server when the size of the P2P overlay
is small, e.g., if it consists of less than 150 peers, the
load is reduced by 37% of a conventional scheme; 2) the
mode switching technique effectively adapts the scheme
to the underlying P2P overlay of various sizes; i.e., it
enhances the advantage of prefetching when the network
size is small, and it avoids unnecessary overhead in large
networks. Result of additional experiments indicates that
the accuracy of such an estimation could be improved by
increasing the TTLs and the frequency of references.

The remainder of this paper is organized as follows. In
Section II, we overview related works. Section III gives a
detailed description of the BitTorrent and its application
to the P2P VoD. Our proposed scheme is described
in Section IV. The result of performance evaluation is
summarized in Section V. Finally, Section VI concludes
the paper with future works.

II. RELATED WORK

Recently, a number of P2P video streaming systems
have been proposed in the literature. Those systems can
be classified into two types by the configuration of the
overlay, i.e., tree-based systems and mesh-based systems.

In tree-based systems, participant peers organize a
tree-structured overlay called a multicast tree, and a
peer located at the root of the tree uploads a copy of
a video file in the form of a video stream. Such a
stream is delivered to the recipients of the video file
through the multicast tree, where each intermediate peer
on the delivery paths continuously forwards the stream
received from a peer in the upstream to the peers in
the downstream. ESM [5] is a tree-based live streaming
system which adopts a single multicast tree for each
video stream. A critical drawback of tree-based systems
such as ESM is that the failure of a peer significantly
degrades the routing performance of the overall system.
In order to overcome such a problem, SplitStream [6]
prepares several multicast trees for each video stream,
and uses those trees in a combined manner. P2Cast [7]

is another tree-based scheme based on the notion of
patching. Patching is a technique which allows each peer
to receive video streams having been delivered in the
past, by caching those streams in each intermediate peer.

In contrast to tree-based systems, P2P overlay in
mesh-based systems can take any structure, and each link
in the overlay can be used in both directions. Thus, by
adopting a graph structure with high connectivity as an
underlying P2P overlay, we could effectively resolve the
drawback of tree-based systems. In mesh-based systems,
each file is divided into several chunks, and each peer
downloads chunks from adjacent peers, while uploading
other chunks to the adjacent peers. CoolStreaming [8] is
a typical mesh-based live streaming system based on that
idea, where the mesh structure of the system is organized
by executing a gossip protocol.

Recently, BitTorrent file sharing system attracts con-
siderable attention as a key infrastructure to realize an
efficient delivery of video streams to their designated
recipients. BASS [9] is the first P2P VoD based on that
idea. In this system, chunks can be downloaded from
adjacent peers, in addition to the ordinary download from
the media server. In [10], Vlavianos et al. improved the
piece selection rule in the BitTorrent, and designed a P2P
VoD called BiToS. A remarkable feature of BiToS is that
it does not rely on any media server, while techniques
proposed there are also applicable to P2P VoDs with a
media server.

III. BITTORRENT

In this section, we first describe an overview of the
BitTorrent protocol with its two key techniques; i.e., an
incentive mechanism and the rarest first piece selection
rule. We then outline BASS and BiToS, which are P2P
VoDs based on the BitTorrent protocol.

A. Overview

In the BitTorrent protocol, each file is divided into
several chunks called pieces, and those pieces are ex-
changed among peers relevant to that file. A BitTorrent
network consists of a tracker and a collection of peers,
and the tracker manages the information on all peers in
the network, such as peer ID, IP address, and the port
number. To start the download of a file, each peer first
sends a request to the tracker relevant to the requested
file to join the network managed by the tracker. Upon
receiving a request, the tracker sends back a list of
peers to the requester, so that the requester establishes
a connection to several peers relevant to the requested
file. After that, each peer periodically requests a list of

peers to the tracker, to establish additional connections to
the relevant peers. During the download of pieces from
adjacent peers, each peer keeps the piece availability for
each adjacent peer, which denotes whether each piece is
held or not by the peer, and uses it in determining the
order of pieces to be downloaded (details of the piece
ordering scheme are described in the next subsection). In
addition, in order to keep such an information as accurate
as possible, whenever a piece is newly acquired, each
peer informs the fact to all of its adjacent peers.

B. Piece Selection Rule

The performance of the BitTorrent protocol is signifi-
cantly affected by the piece selection rule. A key point to
realize an efficient download under the protocol is how
to avoid the slowdown due to the rareness of the pieces
to be downloaded, since a peer to have a rare piece be-
comes a bottleneck in the overall download process. This
motivates a piece selection rule called the Rarest-First
policy, where the word “rarest” indicates that the number
of adjacent peers holding that piece is the smallest. Such
a set of rarest pieces can be easily identified by using
the piece availability information locally kept by each
peer. Note that this policy is effective not only to avoid
the slowdown of a download, but also to protect rare
pieces from being extinct due to an unexpected failure
or a sudden leave of the peers.

C. Incentive Mechanism

Another key issue we need to consider is how to
motivate each peer to upload its acquired pieces to the
other peers. In other words, we should prevent each
peer from being selfishly downloading pieces without
contributing to the system as an uploader. In order to
regulate such a cooperative behavior of the peers, the Bit-
Torrent protocol uses a choke/unchoke mechanism in the
following manner (note that we will merely describe a
typical scheme based on the tit-for-tat strategy, although
several alternative schemes are prepared in the BitTorrent
protocol): In the protocol, at any point in time, the
number of target peers to which acquired pieces can be
uploaded is bounded by a constant for each peer, where
the status of each connection is controlled by using
choke/unchoke operations. The amount of contributions
as an uploader is evaluated by the upload rate, i.e., by the
amount of uploads per second, and each peer determines
the set of target (i.e., unchoked) peers in a non-increasing
order of the upload rate of the adjacent peers.

P2P network

Server

peer

peer

peer

TrackerPeer(User)

Peer List

Piece Upload

Piece
Exchange

Fig. 1. System architecture of the BASS.

D. BASS

BASS is the first P2P VoD based on the BitTorrent
protocol. System architecture of BASS is illustrated in
Figure 1. In addition to the basic infrastructure used in
the original BitTorrent, it uses a media server which
stores all video files to be uploaded. Each peer down-
loads pieces from the media server in a playback order,
while conducting a (random) download from adjacent
peers, where the rule for the piece selection is slightly
modified in such a way that the pieces prior to the current
playback position will never be selected. During the
download from the media server, it skips the download
of pieces which have already been acquired from the
adjacent peers, or pieces which are expected to be
acquired before their playback time.

E. BiToS

BiToS is anathor P2P VoD developed by Vlavianos et
al. [10]. Figure 2 illustrates the system architecture of the
BiToS. In P2P VoDs based on the BitTorrent protocol,
each peer should collect pieces close to its playback
position as quickly as possible to avoid unnecessary
suspending of a video play. In other words, each piece
is given a deadline, and the criticalness of such deadline
gradually and dynamically changes after starting the play
of the video. However, the Rarest-First policy adopted
in the BitTorrent protocol does not explicitly take into
account such a deadline, but merely tries to collect rare
pieces independent of the position in the given media file.
Thus, it is difficult to collect all pieces before deadline
under the piece selection rule adopted in the original
BitTorrent.

To overcome such a problem, the BiToS adopts the

P2P network

peer

peer

peer

TrackerPeer(User)

Peer List

Piece

Exchange

Fig. 2. System architecture of the BiToS.

following modified piece selection rule: At first, each
peer partitions the set of unacquired pieces into two
subsets, i.e., a high priority set consisting of a limited
number of high priority pieces close to the deadline,
and the set of remaining pieces. After selecting one
subset by flipping a coin, each peer selects a piece to
be downloaded from the selected subset according to the
Rarest First policy, where the probability of selecting the
former subset is given by p ∈ [0, 1]. Note that parameter
p controls the balance between the deadline requirement
and the diversity of the collected pieces; e.g., for large
p’s, each peer can have a more chance to acquire pieces
before their deadline, and for small p’s, each peer can
acquire rare pieces which would become a bottleneck in
the future.

IV. PROPOSED SCHEME

A. System Architecture

Similar to the BASS, our system architecture consists
of a tracker, a media server, and a collection of peers con-
nected by an overlay network. The role of the tracker is
the same as the original BitTorrent protocol. The role of
the media server is to store all video files, and to upload
those files upon request. The configuration of the overlay
network is controlled by the tracker. After joining the
network, each peer starts to download a requested file
by repeatedly exchanging pieces among adjacent peers.
Each peer can also download pieces directly from the
media server so as to meet the deadline, i.e., when the
remaining time before its playback becomes as short as
the estimated download time from the media server, each
peer directly asks the media server to deliver that piece.

In such a hybrid approach, the load of the media
server becomes a bottleneck if it receives a large number
of requests in a short time period. Such a situation
frequently occurs if there are only few copies of each
piece in the overlay, and in fact, in many VoD systems
such as YouTube, we cannot avoid such a situation since
it provides a large number of “unpopular” videos each
of which is shared by a small number of peers. Although
such a concentration of the load to the media server could
be alleviated by the piece selection rule adopted in the
BiToS, it is not enough in many cases.

B. Missing Piece Request

The first technique used in our proposed scheme is to
conduct a “prefetch” of missing pieces from the media
server, where missing piece is a piece which is not
held by any peer in the overlay (note that it is different
from the notion of rarest pieces used in the Rarest
First policy, since a piece selected under the rarest first
protocol should exist in the network). In the following,
we call such a request for a missing piece Missing
Piece Request (MPR, for short). The performance of
such a prefetching scheme is significantly affected by the
timing and the frequency of MPRs issued by each peer,
in addition to the selection of pieces to be requested.
We design our scheme in such a way that each peer
issues an MPR only when there are no pieces which can
be downloaded from the adjacent peers. Note that it is
different from a simple deadline driven scheme, since
in our scheme, each peer can issue an MPR even if the
deadline for the unacquired pieces is not critical.

A key point in this approach is how to identify missing
pieces in the overlay. Although such an information
could be acquired by aggregating the piece availability
of all peers to the media server, it causes an extra load
to the media server. On the other hand, if the acquired
information is not accurate, and many of identified pieces
could be acquired through the local communication
among nearby peers, it would also unnecessarily increase
the load of the media server.

In the proposed scheme, each peer periodically col-
lects the piece availability of nearby peers by flooding a
query with an appropriate TTL. Each query contains the
peer ID of the requester, sequence number concerned
with the requester, and the TTL, where the sequence
number is the number of queries issued by the requester
which is used to avoid multiple responses to the same
query. More concretely, if it receives a copy of a query,
each peer returns a response to the query only when the

sequence number of the query is larger than the largest
sequence number received from the same requester,

In the original BitTorrent protocol, the notion of local
piece availabiliy (LPA) is used to identify a set of rarest
pieces, where LPA of a peer is an accumulated value
of the piece availability in its adjacent peers. In this
paper, in order to identify a set of missing pieces as
accurately as possible, a new notion of piece availability
called chain piece availability (CPA) is introduced. CPA
of a peer is a bit array representing the piece availability
in a region centered at the peer. It is initialized by
using the LPA of the corresponding peer, in such a
way that an element in the CPA takes value 1 if and
only if the corresponding element in the LPA takes a
positive value, and is propagated through the network
by conducting an issue of queries in a “chain-reaction”
manner. More concretely, each peer repeatedly issues a
query requesting for CPAs, and after receiving CPAs
from nearby peers (within a given TTL) as the query-
response, each peer updates its CPA, such that: 1) to take
a bit-wise OR of its own CPA and received CPAs, and 2)
to replace the CPA by the outcome of the operation. After
calculating the array, each peer recognizes that pieces
whose value of CPA are 0 are missing pieces. Finally, in
order to reflect the removal of pieces to the CPA, each
peer periodically refreshes the CPA.

C. Switching MPR

The second technique developed in the proposed
scheme is to switch the mode of peers according to the
estimated size of the overlay network. In the following,
we call such a mode switch Switching MPR (SMPR,
for short). Direct download of missing pieces from the
media server works effectively when the number of peers
is relatively small. However, as will be shown in Section
V, the performance of the scheme gradually degrades as
increasing the number of peers in the network, while the
cost of MPR increases in proportion to the number of
peers. A reason of such phenomena is that an increase
of the number of non-adjacent peers makes it difficult
to accurately estimate the set of missing pieces in the
network, and the number of missing pieces decrease as
increasing the number of peers, since for each piece,
the possibility of being held by at least one peer should
increase.

We overcome such problem by conducting SMPRs.
Consider a peer who is currently playing a video, and let
X be the number of pieces constitute the corresponding
file. Let N be a local variable representing the estimated
number of peers in the network. In the scheme, each

peer switches its mode by the value of N/X; i.e., if it is
smaller than a predetermined threshold, it switches to the
Small Network mode, and issues CPA request queries
and MPRs according to the policy described in the last
subsection; otherwise, it switches to the Large Network
mode, and stops to issue the queries and MPRs, where
it returns LPA instead of CPA if it receives a request
for a CPA under the Large Network mode (the impact
of the threshold to the performance will be evaluated
in Section V). The value of N is updated at each time
of requesting a set of peers to the tracker, where in
the BitTorrent protocol, each peer should periodically
acquire such a list of peers from the tracker. A concrete
way of estimating the value of N from the response
received from the tracker is given in the next subsection.

The reader should note that in the resulting scheme,
each peer conducts an SMPR by referring to the value of
N/X , instead of N or X . By normalizing the estimated
number of peers by the number of pieces to be acquired,
we can take into account the probability that each piece
is held by a peer in the network. More concretely, we
can make the following observations:

• For any fixed N , a peer becomes the
Small Network mode if the number of pieces
need to be acquired is larger than the threshold.
As long as being in the Small Network mode, it
can issue MPRs to the media server if and only
if it detects that there are no pieces which can be
downloaded from the adjacent peers (note that if
there exists such a piece, it does not issue an MPR
and tries to collect all pieces merely through the
communication to the adjacent peers).

• The value of the threshold changes in proportion
to the estimated size of the network. That is, the
threshold on the number of pieces becomes twice
if the estimated network size is a twice. This re-
flects an observation such that the issuing MPRs is
particularly effective in small networks.

D. Distributed Estimation of Network Size

Finally, we describe a procedure to estimate the size
of the given network which is locally executed by each
peer. The procedure is based on a random sampling. Let
Γ(i) denote the set of adjacent peers of peer i, and N∗

denote the total number of peers in the system (note
that the value of N∗ is not disclosed to each peer).
Suppose that the tracker returns a set of peers S as a
response to the request from peer i. For simplicity, we
fix the cardinalities of Γ(i) and S to a constant. Let Y
denote a random variable representing the cardinality of

set Γ(i) ∩ S. If each element in S is selected randomly,
for each element in Γ(i), the probability that the element
is selected as an element in S is 1/N∗. Thus, by the
linearity of expectation, the expected value of Y is
|S|×|Γ(i)|

N∗ , which means that N∗ is calculated as in the
following formula:

N∗ :=
|S| × |Γ(i)|

E[Y]
.

In the above formula, E[Y] can be approximated by
repeating the calculation of Γ(i)∩S for different S (and
Γ(i)), provided that the size of the network does not
change.

V. EVALUATION

A. Setup

We conducted simulations to evaluate the performance
of the proposed scheme. In the simulation, we evaluate
the amount of pieces directly downloaded from the
media server, and the total number of queries exchanged
among all peers. In the following, we denote the amount
of pieces downloaded from the media server by Us [Mb],
and the total number of queries by Q. Each result is an
average over five runs. To exclude possible ambiguity,
we call a method issuing MPRs the “MPR method,” and
a method conducting SMPRs the “SMPR method.” The
performance of these two methods are compared with
a method in which no peer issues an MPR (we will
call it the “Normal method”). In all methods, we assume
that the pieces downloaded from its adjacent peers are
selected according to the same rule to the BiToS.

Parameters used in the simulation are determined as
follows. In each run of the simulation, the number of
peers is fixed to a value selected from {50, . . . , 500}. All
peers are homogeneous, and each peer can maintain at
most 30 connections to the other peers. Communication
bandwidth of each peer is fixed to 1024 Kbps in each of
the upload/download directions, and the communication
bandwidth of the media server is not limited. The ratio
of the High Priority Set used in the BiToS is 8% of
the entire pieces, as was recommended in [10]. The
probability p of selecting such High Priority Set is
fixed to 0.8. The propagation speed of queries used in
calculating CPA is fixed to 1 peer per second.

We assume that the system contains exactly one video
file of length 600 sec, with the playback bit-rate of 512
Kbps. As for the behavior of the peers, we consider
the following scenario: All peers simultaneously arrive
at the system at time 0, where initially all pieces are
held merely by the media server. Thus each peer should

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 50 100 150 200 250 300 350 400
Interval between query issues [s]

H
it
 r

a
te

 o
f

M
P

R

TTL=0

TTL=1

TTL=2

TTL=3

Fig. 3. Hit rate of the MPR (500 peers).

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200 250 300 350 400
Interval between query issues [s]

Q
 [

*1
0

3
]

TTL=0

TTL=1

TTL=2

TTL=3

Fig. 4. The total number of queries Q (500 peers).

download random pieces from the media server upon
arrival (although such a bursty request will significantly
increase the traffic around the media server, in this
paper, we omit such an issue by assuming that the
bandwidth of the media server is unlimited). The piece
exchange and the playback of the video will start after
downloading one random piece from the media server,
and the playback continues until it reaches the end of
the file. Then, after completing the playback, each peer
immediately leaves the system.

B. Impact of TTL and the interval between query issues

At first, we evaluate the accuracy of the estimation of
missing pieces by measuring the hit rate of MPRs. The
hit rate is formally defined as the ratio of the number
of (actual) missing pieces to the total number of MPRs
issued by all peers. We evaluate the hit rate by varying
the TTL and the time interval of consecutive queries, by
fixing the number of peers to 500.

Figure 3 illustrates the result. In this figure, “TTL=0”

40000

41000

42000

43000

44000

45000

46000

47000

48000

49000

0 50 100 150 200 250 300 350 400
Interval between query issues [s]

U
s
 [

M
b

]

TTL=0
TTL=1
TTL=2
TTL=3

Fig. 5. Total upload Us of the media server (500 peers).

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5 3

Threshold

Q
 [
*1

0
3
]

SMPR(100)

SMPR(300)

SMPR(500)

Fig. 6. Total number of queries Q.

indicates that each peer makes a decision merely by
referring to its own LPA. We can observe that the hit
rate increases as increasing the TTL and by shortening
the time interval, while it saturates when TTL=2; i.e., it
is not necessary to increase the TTL from two to three to
improve the hit rate. Figure 4 shows the total number of
queries Q exchanged under the same setting. This result
indicates that Q significantly increases as increasing the
TTL from one to two, particularly when the time interval
is short. Figure 5 shows the total amount of pieces Us

uploaded by the media server. It indicates that the case of
TTL=0 is apparently worse than the other cases, and that
the case of TTL=1 is slightly better than other positive
TTLs for short time intervals, although the hit rate of
TTL=1 is lower than other two cases.

According to the above observations, in the following
experiments, we fix the TTL of the query to one, and
the time interval to 30 sec.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 0.5 1 1.5 2 2.5 3
Threshold

U
s
 [

M
b

]

SMPR(100) SMPR(300) SMPR(500)

Fig. 7. Total upload Us of the media server.

C. Threshold of SMPR

Next, we evaluate the impact of the threshold used
in the SMPR. More concretely, we measure Q and Us,
by varying the threshold from 0.01 to 3.0. The number
of peers in the network is fixed to either 100, 300, or
500. Figure 6 illustrates the result for Q. The value of Q
gradually increases as increasing the threshold, and after
exceeding 2.0, it reaches an upper bound, i.e., almost
all peers become the Small Network mode under such
a high threshold. The result for Us is shown in Figure
7. The value of Us sharply changes between 0.2 and
0.5, which corresponds to the range of threshold under
which the number of peers in the Small Network mode
gradually increases. In addition, the amount of reduction
is more significant for networks of smaller sizes, and the
timing of Us starting to decrease in small networks is
slightly early than the timing for large networks. This
is because networks of smaller sizes are more sensitive
to the number of Small Network mode peers, since
such networks have a lot of missing pieces and require
Small Network mode peers. Considering the balance
between Q and Us, in the following experiments, we fix
the threshold for the SMPR to 0.8.

D. Comparison of methods

Finally, we compare the performance of three meth-
ods, i.e., the Normal method, the MPR method and the
SMPR method in terms of metrics Q and Us. Figure 8
shows the result for Us, where the horizontal axis is the
number of peers in the network. Two proposed methods
need less amount of uploads than the Normal method. In
particular, when the number of peers is smaller than 150,
the amount of reduction is more than 37% of the Normal
method. Figure 9 illustrates the result for Q. As shown in

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 50 100 150 200 250 300 350 400 450 500

Number of peers

U
s
 [
M

b
]

Normal

MPR

SMPR

Fig. 8. Total upload Us of the media server.

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450 500

Number of peers

Q
 [

*1
0

3
]

Normal

MPR

SMPR

Fig. 9. Total number of queries Q.

the figure, the number of queries exchanged in the MPR
method increases in proportion to the number of peers,
since all peers periodically issue a query. On the other
hand, the number of queries exchanged in the SMPR
method is bounded by 36000, and gradually decreases
as increasing the number of peers, which is apparently
due to the effect of the SMPR. Consequently, the SMPR
method could significantly reduce the amount of server
upload under the Normal method without significantly
increasing the overall cost.

VI. CONCLUDING REMARKS

In this paper, we propose a data prefetching scheme
for P2P VoDs with a media server. The first idea of
the scheme is to directly request missing pieces to the
media server by estimating the set of missing pieces as
accurately as possible, and the second idea is to switch
the mode of each peer in such a way that the request
for the missing pieces is issued only when the estimated
size of the network is sufficiently small and the number

of pieces constituting the downloaded file is sufficiently
large. The result of simulation indicates that the proposed
scheme reduces the load of the media server by 37%,
compared with a scheme without prefetching.

A future work is to refine the notion of CPA to
improve the accuracy of the estimation of the set of
missing pieces. In addition, we should improve the
proposed scheme so as to relax the bursty requests to
the media server, and evaluate the performance of the
scheme in terms of the traffic around the media server.

REFERENCES

[1] Wikipedia - Video on demand.
http://en.wikipedia.org/wiki/Video on demand

[2] YouTube. http://www.youtube.com/
[3] USTREAM. http://www.ustream.tv/
[4] BitTorrent. http://www.bittorrent.co.jp/
[5] Y-H. Chu, S. G. Rao, S. Seshan and H. Zhang. A Case for End

System Multicast. In ACM SIGMETRICS, 1–12, 2002.
[6] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Row-

stron and A. Singh. SplitStream: High-Bandwidth Multicast in
Cooperative Environments. In ACM SOSP, 298–313, 2003.

[7] Y. Guo, K. Suh, J. Kurose and D. Towsley. P2Cast: Peer-to-
Peer Patching Scheme for VoD Service. In WWW Conference,
301–309, 2003.

[8] X. Zhang, J. Liu, B. Li and T-S. P. Yum. CoolStreaming/DONet:
A Data-driven Overlay Network for Peer-to-Peer Live Media
Streaming. In IEEE INFOCOM, 2102–2111, 2005.

[9] C. Dana, D. Li, D. Harrison and C-N. Chuah. BASS: BitTorrent
Assisted Streaming System for Video-on-Demand. In IEEE
MMSP, 1–4, 2005.

[10] A. Vlavianos, M. Iliofotou and M. Faloutsos. BiToS: Enhancing
BitTorrent for Supporting Streaming Applications. In IEEE
Global Internet Symposium, 1–6, 2006.

